Differentiability of p-Harmonic Functions on Metric Measure Spaces
نویسندگان
چکیده
منابع مشابه
DIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملOn Φ-differentiability of Functions over Metric Spaces
In 1933 S. Mazur [4] proved the following Theorem 1. Let (X, ·) be a separable real Banach space. Let f be a real-valued convex continuous function defined on an open convex subset Ω ⊂ X. Then there is a subset A ⊂ Ω of the first category such that f is Gateaux differentiable on Ω \ A. The result of Mazur was a starting point for the theory of differentiability of convex functions (cf. the book...
متن کاملOn the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces
We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximati...
متن کاملFunctions on Localized BMO Spaces over Doubling Metric Measure Spaces
Let X be a doubling metric measure space. In this paper, the authors introduce the notions of Property (M̃) and Property (P ) of X , prove that Property (M̃) implies Property (P ) and give some equivalent characterizations of Property (M̃) and Property (P ). If X has Property (P ), the authors then establish the boundedness of the Lusin-area function, which is defined via kernels modeled on the se...
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2011
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-011-9264-7